Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 29438, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461961

RESUMO

Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in ß-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in ß-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.


Assuntos
Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Testes de Função Respiratória/métodos , Algoritmos , Animais , Simulação por Computador , Feminino , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento (Física) , Neutrófilos/metabolismo , Radiografia , Espirometria , Tomografia Computadorizada por Raios X , Raios X
2.
J Synchrotron Radiat ; 22(4): 1049-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134810

RESUMO

The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Animais , Austrália , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
4.
J Synchrotron Radiat ; 21(Pt 4): 768-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24971973

RESUMO

To assess potential therapies for respiratory diseases in which mucociliary transit (MCT) is impaired, such as cystic fibrosis and primary ciliary dyskinesia, a novel and non-invasive MCT quantification method has been developed in which the transit rate and behaviour of individual micrometre-sized deposited particles are measured in live mice using synchrotron phase-contrast X-ray imaging. Particle clearance by MCT is known to be a two-phase process that occurs over a period of minutes to days. Previous studies have assessed MCT in the fast-clearance phase, ∼20 min after marker particle dosing. The aim of this study was to non-invasively image changes in particle presence and MCT during the slow-clearance phase, and simultaneously determine whether repeat synchrotron X-ray imaging of mice was feasible over periods of 3, 9 and 25 h. All mice tolerated the repeat imaging procedure with no adverse effects. Quantitative image analysis revealed that the particle MCT rate and the number of particles present in the airway both decreased with time. This study successfully demonstrated for the first time that longitudinal synchrotron X-ray imaging studies are possible in live small animals, provided appropriate animal handling techniques are used and care is taken to reduce the delivered radiation dose.


Assuntos
Microesferas , Depuração Mucociliar/fisiologia , Mucosa Respiratória/diagnóstico por imagem , Mucosa Respiratória/fisiologia , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Synchrotron Radiat ; 21(Pt 2): 430-45, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562566

RESUMO

Propagation-based phase-contrast X-ray imaging (PB-PCXI) using synchrotron radiation has achieved high-resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB-PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source-to-sample distances of over 137 m. This study aimed to measure the capabilities of PB-PCXI on IMBL for imaging small animal lungs to study lung disease. The feasibility of combining this technique with computed tomography for three-dimensional imaging and X-ray velocimetry for studies of airflow and non-invasive lung function testing was also investigated. Detailed analysis of the role of the effective source size and sample-to-detector distance on lung image contrast was undertaken as well as phase retrieval for sample volume analysis. Results showed that PB-PCXI of lung phantoms and mouse lungs produced high-contrast images, with successful computed tomography and velocimetry also being carried out, suggesting that live animal lung imaging will also be feasible at the IMBL.


Assuntos
Pulmão/diagnóstico por imagem , Síncrotrons , Ar , Algoritmos , Animais , Estudos de Viabilidade , Vidro , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Microesferas , Imagens de Fantasmas , Reologia/métodos , Sefarose , Tomografia Computadorizada por Raios X/métodos
6.
Sci Rep ; 4: 3689, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418935

RESUMO

To determine the efficacy of potential cystic fibrosis (CF) therapies we have developed a novel mucociliary transit (MCT) measurement that uses synchrotron phase contrast X-ray imaging (PCXI) to non-invasively measure the transit rate of individual micron-sized particles deposited into the airways of live mice. The aim of this study was to image changes in MCT produced by a rehydrating treatment based on hypertonic saline (HS), a current CF clinical treatment. Live mice received HS containing a long acting epithelial sodium channel blocker (P308); isotonic saline; or no treatment, using a nebuliser integrated within a small-animal ventilator circuit. Marker particle motion was tracked for 20 minutes using PCXI. There were statistically significant increases in MCT in the isotonic and HS-P308 groups. The ability to quantify in vivo changes in MCT may have utility in pre-clinical research studies designed to bring new genetic and pharmaceutical treatments for respiratory diseases into clinical trials.


Assuntos
Fibrose Cística/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Sistema Respiratório/diagnóstico por imagem , Solução Salina Hipertônica/administração & dosagem , Síncrotrons , Animais , Fibrose Cística/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Cintilografia , Raios X
7.
PLoS One ; 8(1): e55822, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383288

RESUMO

In the airways of those with cystic fibrosis (CF), the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL) volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.


Assuntos
Fibrose Cística/diagnóstico por imagem , Líquido Extracelular , Mucosa Respiratória/metabolismo , Animais , Fibrose Cística/terapia , Feminino , Técnicas In Vitro , Camundongos , Radiografia , Fatores de Tempo , Traqueia/metabolismo
8.
J Aerosol Med Pulm Drug Deliv ; 26(5): 307-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23298238

RESUMO

BACKGROUND: The manner in which fluid instillations into mouse nose and lung distribute through the airways is poorly understood. Many agents are delivered in this way for testing as therapeutics, or as challenges designed to establish infections or create systemic drug delivery effects. These agents are delivered into mouse airways with little knowledge of the manner in which doses move through the airways, how long they reside in each region, and where the instilled materials eventually reach. METHODS: Synchrotron phase-contrast X-ray imaging (PCXI) was used to elucidate the primary controlling characteristics of mouse airway fluid dosing. High-speed image acquisition was used to track the movement of a range of bolus doses of an iodine-based contrast fluid through the nose (n=15) and lungs (n=10) of live anesthetized mice. For the lung studies, the mice were ventilated and paralyzed to control animal movement. Post-experiment image processing was used to visualize the fluid movement. RESULTS: The maximum dose that could be retained in only the anterior nose was ∼7.5 µL (20 g mouse), and a range of dynamic dose behaviors was documented after delivery. In the lung, the use of mechanical ventilation in combination with a paralytic agent prevented confounding artifactual movement, improving visualization of fluid progression through the airways. In the lung, optimized image analysis using the high image capture rate revealed the presence of respiratory pauses that could not be visualized at slower acquisition rates. The variability in the outcome of identical dose deliveries in different animals indicates that uniform lung distribution cannot be expected to occur with tracheal fluid delivery. CONCLUSIONS: With adequate imaging rate and fluid dose parameters, this study shows the utility of synchrotron PCXI for determining the post-delivery behavior and fate of fluid doses such as those used in in vivo gene transfer or pharmaceutical studies.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Sistema Respiratório/diagnóstico por imagem , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Síncrotrons , Distribuição Tecidual
9.
PLoS One ; 8(1): e53805, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349744

RESUMO

Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life. Phase contrast imaging revealed that only two lung sacs contain air after the first hour of life in the fat-tailed dunnart. While the lung of the tammar wallaby was comparatively more developed, both species demonstrated massive increases in air sac number and architectural complexity during the postnatal period. In addition, both the tammar wallaby and fat-tailed dunnart had lower lung volumes and parenchymal surface areas than were expected from morphometrically determined allometric equations relating these variables to body mass during the neonatal period. However, lung volume is predicted to scale with mass as expected after the neonatal marsupial reaches a body mass of ∼1 g and no longer relies on the skin for gas exchange. Decreased lung volume in the marsupial neonate further supports the maxim that cutaneous gas exchange occurs in the marsupial neonate because the respiratory apparatus is not yet capable of meeting the gas exchange requirements of the newborn.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/crescimento & desenvolvimento , Macropodidae/crescimento & desenvolvimento , Tomografia Computadorizada por Raios X , Animais , Imageamento Tridimensional , Tamanho do Órgão , Síncrotrons
10.
Biol Lett ; 8(6): 952-5, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22764115

RESUMO

Conodont elements are the earliest vertebrate dental structures. The dental tools on elements responsible for food fracture-cusps and denticles-are usually composed of lamellar crown tissue (a putative enamel homologue) and the enigmatic tissue known as 'white matter'. White matter is unique to conodonts and has been hypothesized to be a functional adaptation for the use of elements as teeth. We test this quantitatively using finite-element analysis. Our results indicate that white matter allowed cusps and denticles to withstand greater tensile stresses than do cusps comprised solely of lamellar crown tissue. Microstructural variation is demonstrably associated with dietary and loading differences in teeth, so secondary loss of white matter through conodont phylogeny may reflect changes in diet and element occlusal kinematics. The presence, development and distribution of white matter could thus provide constraints on function in the first vertebrate dental structures.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Fósseis , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Fenômenos Biomecânicos , Análise de Elementos Finitos , Resistência à Tração , Dente/fisiologia
11.
J Synchrotron Radiat ; 19(Pt 4): 551-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713889

RESUMO

Particles suspended in the air are inhaled during normal respiration and unless cleared by airway defences, such as the mucociliary transit (MCT) system, they can remain and affect lung and airway health. Synchrotron phase-contrast X-ray imaging (PCXI) methods have been developed to non-invasively monitor the behaviour of individual particles in live mouse airways and in previous studies the MCT behaviour of particles and fibres in the airways of live mice after deposition in a saline carrier fluid have been examined. In this study a range of common respirable pollutant particles (lead dust, quarry dust and fibreglass fibres) as well as marker particles (hollow glass micro-spheres) were delivered into the trachea of live mice using a dry powder insufflator to more accurately mimic normal environmental particulate exposure and deposition via inhalation. The behaviour of the particles once delivered onto the airway surface was tracked over a five minute period via PCXI. All particles were visible after deposition. Fibreglass fibres remained stationary throughout while all other particle types transited the tracheal surface throughout the imaging period. In all cases the majority of the particle deposition and any airway surface activity was located close to the dorsal tracheal wall. Both the individual and bulk motions of the glass bead marker particles were visible and their behaviour enabled otherwise hidden MCT patterns to be revealed. This study verified the value of PCXI for examining the post-deposition particulate MCT behaviour in the mouse trachea and highlighted that MCT is not a uniform process as suggested by radiolabel studies. It also directly revealed the advantages of dry particle delivery for establishing adequate particulate presence for visualizing MCT behaviour. The MCT behaviour and rate seen after dry particle delivery was different from that in previous carrier-fluid studies. It is proposed that dry particle delivery is essential for producing environmentally realistic particle deposition and studying how living airway surfaces handle different types of inhaled particles by MCT processes.


Assuntos
Poluentes Atmosféricos , Biomarcadores/metabolismo , Depuração Mucociliar/fisiologia , Fenômenos Fisiológicos Respiratórios , Traqueia/fisiologia , Animais , Poeira , Vidro , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Sistema Respiratório , Síncrotrons , Raios X
12.
J R Soc Interface ; 9(74): 2213-24, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22491972

RESUMO

During breathing, lung inflation is a dynamic process involving a balance of mechanical factors, including trans-pulmonary pressure gradients, tissue compliance and airway resistance. Current techniques lack the capacity for dynamic measurement of ventilation in vivo at sufficient spatial and temporal resolution to allow the spatio-temporal patterns of ventilation to be precisely defined. As a result, little is known of the regional dynamics of lung inflation, in either health or disease. Using fast synchrotron-based imaging (up to 60 frames s(-1)), we have combined dynamic computed tomography (CT) with cross-correlation velocimetry to measure regional time constants and expansion within the mammalian lung in vivo. Additionally, our new technique provides estimation of the airflow distribution throughout the bronchial tree during the ventilation cycle. Measurements of lung expansion and airflow in mice and rabbit pups are shown to agree with independent measures. The ability to measure lung function at a regional level will provide invaluable information for studies into normal and pathological lung dynamics, and may provide new pathways for diagnosis of regional lung diseases. Although proof-of-concept data were acquired on a synchrotron, the methodology developed potentially lends itself to clinical CT scanning and therefore offers translational research opportunities.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pneumonia/diagnóstico por imagem , Respiração , Síncrotrons , Animais , Medidas de Volume Pulmonar/métodos , Camundongos , Coelhos , Radiografia
13.
Proc Biol Sci ; 279(1739): 2849-54, 2012 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-22418253

RESUMO

Conodonts have been considered the earliest skeletonizing vertebrates and their mineralized feeding apparatus interpreted as having performed a tooth function. However, the absence of jaws in conodonts and the small size of their oropharyngeal musculature limits the force available for fracturing food items, presenting a challenge to this interpretation. We address this issue quantitatively using engineering approaches previously applied to mammalian dentitions. We show that the morphology of conodont food-processing elements was adapted to overcome size limitations through developing dental tools of unparalleled sharpness that maximize applied pressure. Combined with observations of wear, we also show how this morphology was employed, demonstrating how Wurmiella excavata used rotational kinematics similar to other conodonts, suggesting that this occlusal style is typical for the clade. Our work places conodont elements within a broader dental framework, providing a phylogenetically independent system for examining convergence and scaling in dental tools.


Assuntos
Orofaringe/fisiologia , Orofaringe/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/fisiologia , Animais , Quirópteros/anatomia & histologia , Quirópteros/classificação , Comportamento Alimentar , Fósseis , Microscopia Eletrônica de Varredura , Dente/anatomia & histologia
14.
Ann Biomed Eng ; 40(5): 1160-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22189492

RESUMO

Since lung diseases adversely affect airflow during breathing, they must also alter normal lung motion, which can be exploited to detect these diseases. However, standard imaging techniques such as CT and MRI imaging during breath-holds provide little or no information on lung motion and cannot detect diseases that cause subtle changes in lung structure. Phase-contrast X-ray imaging provides images of high contrast and spatial resolution with temporal resolutions that allow multiple images to be acquired throughout the respiratory cycle. Using X-ray phase-contrast imaging, coupled with velocimetry, we have measured lung tissue movement and determined velocity fields that define speed and direction of regional lung motion throughout a breath in normal Balb/c nude male mice and mice exposed to bleomycin. Regional maps of lung tissue motion reveal both the heterogeneity of normal lung motion, as well as abnormal motion induced by bleomycin treatment. Analysed histologically, bleomycin treatment caused pathological changes in lung structure that were heterogenous, occupying less than 12% of the lung at 6 days after treatment. Moreover, plethysmography failed to detect significant changes in compliance at either 36 h or 6 days after treatment. Detailed analysis of the vector fields demonstrated major differences (p < 0.001) in regional lung motion between control and bleomycin-treated mice at both 36 h and 6 days after treatment. The results of this study demonstrate that X-ray phase-contrast imaging, coupled with velocimetry, can detect early stage, subtle and non-uniform lung disease.


Assuntos
Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Mecânica Respiratória , Tomografia Computadorizada por Raios X/métodos , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Pneumopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fatores de Tempo
15.
Opt Express ; 19(20): 19781-9, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21996920

RESUMO

A single-exposure quantitative method of x-ray phase contrast imaging, suitable for animal in vivo observations, is described and shown experimentally both for a known static sample and an ex vivo biological airway. The ability to acquire the desired information within a single exposure is important for dynamic samples, as is sufficient sensitivity to reveal small variations in the composition or thickness of such a sample. This approach satisfies both these needs by analyzing how a reference grid pattern is deformed by the presence of the sample, similar to a Shack-Hartmann sensor. By resolving the shift of the pattern into horizontal and vertical components, a quantitative phase depth map is recovered, sensitive to both sharp edges as well as low phase gradients.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Contraste de Fase/instrumentação , Espalhamento de Radiação , Tomografia Computadorizada por Raios X/métodos , Absorção , Difusão , Análise de Fourier , Humanos , Raios X
16.
Ann Biomed Eng ; 39(6): 1643-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21293973

RESUMO

High resolution in vivo velocity measurements within the cardiovascular system are essential for accurate calculation of vessel wall shear stress, a highly influential factor for the progression of arterial disease. Unfortunately, currently available techniques for in vivo imaging are unable to provide the temporal resolution required for velocity measurement at physiological flow rates. Advances in technology and improvements in imaging systems are allowing a relatively new technique, X-ray velocimetry, to become a viable tool for such measurements. This study investigates the haemodynamics of pulsatile blood flow in an optically opaque in vitro model at physiological flow rates using X-ray velocimetry. The in vitro model, an asymmetric stenosis, is designed as a 3:1 femoral artery with the diameter and flow rate replicating vasculature of a mouse. Velocity measurements are obtained over multiple cycles of the periodic flow at high temporal and spatial resolution (1 ms and 29 µm, respectively) allowing accurate measurement of the velocity gradients and calculation of the wall shear stress. This study clearly illustrates the capability of in vitro X-ray velocimetry, suggesting it as a possible measurement technique for future in vivo vascular wall shear stress measurement.


Assuntos
Constrição Patológica/fisiopatologia , Artéria Femoral/fisiopatologia , Modelos Cardiovasculares , Fluxo Pulsátil , Animais , Constrição Patológica/diagnóstico por imagem , Constrição Patológica/patologia , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/patologia , Humanos , Camundongos , Radiografia
17.
Opt Lett ; 36(1): 55-7, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209685

RESUMO

The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.


Assuntos
Dispositivos Ópticos , Processamento de Imagem Assistida por Computador , Raios X
18.
J Struct Biol ; 173(1): 86-98, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20554051

RESUMO

5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5'-alkylthio binding site in Arabidopsis thalianaAtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein-SAH complex at 2.2Å resolution. The lack of catalytic activity appears to be related to the enzyme's inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium-hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.


Assuntos
Proteínas de Arabidopsis/metabolismo , Desoxiadenosinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosil-Homocisteína/metabolismo , Tionucleosídeos/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Calorimetria , Catálise , Cristalização , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Molecular , N-Glicosil Hidrolases/genética , Purina-Núcleosídeo Fosforilase/genética , Especificidade por Substrato , Termodinâmica
19.
Biochemistry ; 49(46): 9985-96, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-20961145

RESUMO

Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH. In the present work, we confirm that dAH is a modest inhibitor of BS (K(i) = 20 µM) and show that cooperative binding of dAH with excess methionine results in a 3-fold enhancement of this inhibition. However, with regard to the other substrates of MTA/AdoHcy nucleosidase, we demonstrate that AdoHcy is a potent inhibitor of BS (K(i) ≤ 650 nM) while MTA is not an inhibitor. Inhibition by both dAH and AdoHcy likely accounts for the in vivo requirement for MTA/AdoHcy nucleosidase and may help to explain some of the experimental disparities between various laboratories studying BS. In addition, we examine possible inhibition by other AdoMet-related biomolecules present as common contaminants in commercial AdoMet preparations and/or generated during an assay, as well as by sinefungin, a natural product that is a known inhibitor of several AdoMet-dependent enzymes. Finally, we examine the catalytic activity of BS with highly purified AdoMet in the presence of MTAN to relieve product inhibition and present evidence suggesting that the enzyme is half-site active and capable of undergoing multiple turnovers in vitro.


Assuntos
Sulfurtransferases/antagonistas & inibidores , Sulfurtransferases/química , Sítios de Ligação , Catálise , Domínio Catalítico , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Cinética , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Tionucleosídeos/química , Tionucleosídeos/metabolismo
20.
J Synchrotron Radiat ; 17(6): 719-29, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20975216

RESUMO

During respiration, particles suspended in the air are inhaled and unless cleared by airway defences they can remain and affect lung health. Their size precludes the use of standard imaging modalities so we have developed synchrotron phase-contrast X-ray imaging (PCXI) methods to non-invasively monitor the behaviour of individual particles in live mouse airways. In this study we used these techniques to examine post-deposition particle behaviour in the trachea. PCXI was used to monitor the deposition and subsequent behaviour of particles of quarry dust and lead ore; fibres of asbestos and fibreglass; and hollow glass micro-spheres. Visibility was examined in vitro and ex vivo to avoid the complicating effects of surrounding tissue and respiratory or cardiac motion. Particle behaviour was then examined after deposition onto the tracheal airway surfaces of live mice. Each particle and fibre looked and behaved differently on the airway surface. Particles lodged on the airway shortly after deposition, and the rate at which this occurred was dependent on the particle type and size. After the live-imaging experiments, excised airway samples were examined using light and electron microscopy. Evidence of particle capture into the airway surface fluids and the epithelial cell layer was found. PCXI is a valuable tool for examining post-deposition particulate behaviour in the tracheal airway. These first indications that the interaction between airways and individual particles may depend on the particle type and size should provide a novel approach to studying the early effects of respired particles on airway health.


Assuntos
Poluentes Atmosféricos/metabolismo , Traqueia/metabolismo , Animais , Amianto/metabolismo , Células Epiteliais/metabolismo , Vidro , Substâncias Perigosas/metabolismo , Camundongos , Camundongos Pelados , Depuração Mucociliar , Tamanho da Partícula , Radiografia , Síncrotrons/instrumentação , Traqueia/citologia , Traqueia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...